A body is rolling down an inclined plane. If kinetic energy of rotation is $40\%$ of  translational kinetic energy, then the body is a

  • A

    Ring

  • B

    Cylinder

  • C

    Hollow ball

  • D

    Solid ball

Similar Questions

Two point masses of $0.3\ kg$ and $0.7\ kg$ are fixed at the ends of a rod of length $1.4\ m$  and of negligible mass. The rod is set rotating about an axis perpendicular  to its length with a uniform angular speed. The point on the rod through which the axis should pass in order that the work required for rotation of the rod is minimum is located at a distance of  

  • [AIIMS 2000]

A uniform ring of radius $R$ is moving on a horizontal surface with speed $v$, then climbs up a ramp of inclination $30^{\circ}$ to a height $h$. There is no slipping in the entire motion. Then, $h$ is

  • [KVPY 2016]

$A$ rod hinged at one end is released from the horizontal position as shown in the figure. When it becomes vertical its lower half separates without exerting any reaction at the breaking point. Then the maximum angle $‘\theta ’$ made by the hinged upper half with the vertical is ......... $^o$.

To maintain a rotor at a uniform angular speed of $200 \;rad s^{-1}$, an engine needs to transmit a torque of $180 \;N m .$ What is the power required by the engine?

(Note: uniform angular velocity in the absence of friction implies zero torque. In practice, applied torque is needed to counter frictional torque). Assume that the engine is $100 \%$ efficient.

A circular disc has a mass of $1\ kg$ and radius $40\ cm$. It is rotating about an axis passing through its centre and perpendicular to its plane with a speed of $10\ rev/s$. The work done in joules in stopping it would be ...... $J$